Using the Hubble Space Telescope and other sophisticated tools of observation and analysis, however, astronomers have identified hundreds of objects that are too massive and dark to be anything but black holes, including a supermassive one at the center of the Milky Way. According to current theory, the universe should contain billions more.

As part of his Ph.D. thesis in 1966, Dr. Hawking showed that when you ran the film of the expanding universe backward, you would find that such a singularity had to have existed sometime in cosmic history; space and time, that is, must have had a beginning. He, Dr. Penrose and a rotating cast of colleagues went on to publish a series of theorems about the behavior of black holes and the dire fate of anything caught in them.

Dr. Hawking’s signature breakthrough resulted from a feud with the Israeli theoretical physicist Jacob Bekenstein, then a Princeton graduate student, about whether black holes could be said to have entropy, a thermodynamic measure of disorder. Dr. Bekenstein said they could, pointing out a close analogy between the laws that Dr. Hawking and his colleagues had derived for black holes and the laws of thermodynamics.

Dr. Hawking said no. To have entropy, a black hole would have to have a temperature. But warm objects, from a forehead to a star, radiate a mixture of electromagnetic radiation, depending on their exact temperatures. Nothing could escape a black hole, and so its temperature had to be zero. “I was very down on Bekenstein,” Dr. Hawking recalled.


Dr. Hawking in 1979. The only subject at University College, Oxford, that he found exciting was cosmology because it dealt with what he called “the big question: Where did the universe come from?”

Santi Visalli/Getty Images

To settle the question, Dr. Hawking decided to investigate the properties of atom-size black holes. This, however, required adding quantum mechanics, the paradoxical rules of the atomic and subatomic world, to gravity, a feat that had never been accomplished. Friends turned the pages of quantum theory textbooks as Dr. Hawking sat motionless staring at them for months. They wondered if he was finally in over his head.

When he eventually succeeded in doing the calculation in his head, it indicated to his surprise that particles and radiation were spewing out of black holes. Dr. Hawking became convinced that his calculation was correct when he realized that the outgoing radiation would have a thermal spectrum characteristic of the heat radiated by any warm body, from a star to a fevered forehead. Dr. Bekenstein had been right.

Dr. Hawking even figured out a way to explain how particles might escape a black hole. According to quantum principles, the space near a black hole would be teeming with “virtual” particles that would flash into existence in matched particle-and-antiparticle pairs — like electrons and their evil twin opposites, positrons — out of energy borrowed from the hole’s intense gravitational field.

They would then meet and annihilate each other in a flash of energy, repaying the debt for their brief existence. But if one of the pair fell into the black hole, the other one would be free to wander away and become real. It would appear to be coming from the black hole and taking energy away from it.

But those, he cautioned, were just words. The truth was in the math.

“The most important thing about Hawking radiation is that it shows that the black hole is not cut off from the rest of the universe,” Dr. Hawking said.

It also meant that black holes had a temperature and had entropy. In thermodynamics, entropy is a measure of wasted heat. But it is also a measure of the amount of information — the number of bits — needed to describe what is in a black hole. Curiously, the number of bits is proportional to the black hole’s surface area, not its volume, meaning that the amount of information you could stuff into a black hole is limited by its area, not, as one might naïvely think, its volume.

That result has become a litmus test for string theory and other pretenders to a theory of quantum gravity. It has also led to speculations that we live in a holographic universe, in which three-dimensional space is some kind of illusion.

Andrew Strominger, a Harvard string theorist, said of the holographic theory, “If it’s really true, it’s a deep and beautiful property of our universe — but not an obvious one.”

The discovery of black hole radiation also led to a 30-year controversy over the fate of things that had fallen into a black hole.

Dr. Hawking initially said that detailed information about whatever had fallen in would be lost forever because the particles coming out would be completely random, erasing whatever patterns had been present when they first fell in. Paraphrasing Einstein’s complaint about the randomness inherent in quantum mechanics, Dr. Hawking said, “God not only plays dice with the universe, but sometimes throws them where they can’t be seen.”

Many particle physicists protested that this violated a tenet of quantum physics, which says that knowledge is always preserved and can be retrieved. Leonard Susskind, a Stanford physicist who carried on the argument for decades, said, “Stephen correctly understood that if this was true, it would lead to the downfall of much of 20th-century physics.”

On another occasion, he characterized Dr. Hawking to his face as “one of the most obstinate people in the world; no, he is the most infuriating person in the universe.” Dr. Hawking grinned.

Dr. Hawking admitted defeat in 2004. Whatever information goes into a black hole will come back out when it explodes. One consequence, he noted sadly, was that one could not use black holes to escape to another universe. “I’m sorry to disappoint science fiction fans,” he said.

Despite his concession, however, the information paradox, as it is known, has become one of the hottest and deepest topics in theoretical physics. Physicists say they still do not know how information gets in or out of black holes.

An Earthling’s Guide to Black Holes

Welcome to the place of no return — a region in space where the gravitational pull is so strong that not even light can escape it. This is a black hole.

Raphael Bousso of the University of California, Berkeley, and a former student of Dr. Hawking’s, said the present debate had raised “by another few notches” his estimation of the “stupendous magnitude” of Dr. Hawking’s original discovery.

In 1974, Dr. Hawking was elected a Fellow of the Royal Society, the world’s oldest scientific organization; in 1979, he was appointed to the Lucasian chair of mathematics at Cambridge, a post once held by Isaac Newton. “They say it’s Newton’s chair, but obviously it’s been changed,” he liked to quip.

Dr. Hawking also made yearly visits to the California Institute of Technology in Pasadena, which became like a second home. In 2008, he joined the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, as a visiting researcher.

Having conquered black holes, Dr. Hawking set his sights on the origin of the universe and on eliminating that pesky singularity at the beginning of time from models of cosmology. If the laws of physics could break down there, they could break down everywhere.

In a meeting at the Vatican in 1982, he suggested that in the final theory there should be no place or time when the laws broke down, even at the beginning. He called the notion the “no boundary” proposal.

With James Hartle of the Institute for Theoretical Physics in Santa Barbara, Calif., Dr. Hawking envisioned the history of the universe as a sphere like the Earth. Cosmic time corresponds to latitude, starting with zero at the North Pole and progressing southward.

Although time started there, the North Pole was nothing special; the same laws applied there as everywhere else. Asking what happened before the Big Bang, Dr. Hawking said, was like asking what was a mile north of the North Pole — it was not any place, or any time.

By then string theory, which claimed finally to explain both gravity and the other forces and particles of nature as tiny microscopically vibrating strings, like notes on a violin, was the leading candidate for a “theory of everything.”

In “A Brief History of Time,” Dr. Hawking concluded that “if we do discover a complete theory” of the universe, “it should in time be understandable in broad principle by everyone, not just a few scientists.”

He added, “Then we shall all, philosophers, scientists and just ordinary people, be able to take part in the discussion of why it is that we and the universe exist.”

“If we find the answer to that,” he continued, “it would be the ultimate triumph of human reason — for then we would know the mind of God.”

Until 1974, Dr. Hawking was still able to feed himself and to get in and out of bed. At Jane’s insistence, he would drag himself, hand over hand, up the stairs to the bedroom in his Cambridge home every night, in an effort to preserve his remaining muscle tone. After 1980, care was supplemented by nurses.

Dr. Hawking retained some control over his speech up to 1985. But on a trip to Switzerland, he came down with pneumonia. The doctors asked Jane if she wanted his life support turned off, but she said no. To save his life, doctors inserted a breathing tube. He survived, but his voice was permanently silenced.

It appeared for a time that he would be able to communicate only by pointing at individual letters on an alphabet board. But when a computer expert, Walter Woltosz, heard about Dr. Hawking’s condition, he offered him a program he had written called Equalizer. By clicking a switch with his still-functioning fingers, Dr. Hawking was able to browse through menus that contained all the letters and more than 2,500 words.

Word by word — and when necessary, letter by letter — he could build up sentences on the computer screen and send them to a speech synthesizer that vocalized for him. The entire apparatus was fitted to his motorized wheelchair.

Even when too weak to move a finger, he communicated through the computer by way of an infrared beam, which he activated by twitching his right cheek or blinking his eye. The system was expanded to allow him to open and close the doors in his office and to use the telephone and internet without aid.

Although he averaged fewer than 15 words per minute, Dr. Hawking found he could speak through the computer better than he had before losing his voice. His only complaint, he confided, was that the speech synthesizer, manufactured in California, had given him an American accent.

His decision to write “A Brief History of Time” was prompted, he said, by a desire to share his excitement about “the discoveries that have been made about the universe” with “the public that paid for the research.” He wanted to make the ideas so accessible that the book would be sold in airports.

He also hoped to earn enough money to pay for his children’s education. He did. The book’s extraordinary success made him wealthy, a hero to disabled people everywhere and even more famous.

The news media followed his movements and activities over the years, from visiting the White House to meeting the Dallas Cowboys cheerleaders, and reported his opinions on everything from national health care (socialized medicine in England had kept him alive) to communicating with extraterrestrials (maybe not a good idea, he said), as if he were a rolling Delphic Oracle.

Asked by New Scientist magazine what he thought about most, Dr. Hawking answered: “Women. They are a complete mystery.”


Directing ‘The Theory of Everything’

The Academy Award-winning director James Marsh discusses his newest project, “The Theory of Everything,” which chronicles the life of the cosmologist Stephen Hawking.

By Carrie Halperin on Publish Date October 27, 2014.

Photo by Liam Daniel/Focus Features.

Watch in Times Video »

In 1990, Dr. Hawking and his wife separated after 25 years of marriage; Jane Hawking wrote about their years together in two books, “Music to Move the Stars: A Life With Stephen Hawking” and “Traveling to Infinity: My Life With Stephen.” The latter became the basis of the 2014 movie “The Theory of Everything.”

In 1995, he married Elaine Mason, a nurse who had cared for him since his bout of pneumonia. She had been married to David Mason, the engineer who had attached Dr. Hawking’s speech synthesizer to his wheelchair.

In 2004, British newspapers reported that the Cambridge police were investigating allegations that Elaine had abused Dr. Hawking, but no charges were filed, and Dr. Hawking denied the accusations. They agreed to divorce in 2006.


Dr. Hawking married Elaine Mason in 1995.

Lynne Sladky/Associated Press

A complete list of survivors was not immediately available, but on Wednesday morning, his children, Robert, Lucy and Tim, released the following statement:

“We are deeply saddened that our beloved father passed away today. He was a great scientist and an extraordinary man whose work and legacy will live on for many years. His courage and persistence with his brilliance and humour inspired people across the world. He once said, ‘It would not be much of a universe if it wasn’t home to the people you love.’ We will miss him forever.”

Among his many honors, Dr. Hawking was named a commander of the British Empire in 1982. In the summer of 2012, he had a star role in the opening of the Paralympics Games in London. The only thing lacking was the Nobel Prize, and his explanation for this was characteristically pithy: “The Nobel is given only for theoretical work that has been confirmed by observation. It is very, very difficult to observe the things I have worked on.”

Dr. Hawking was a strong advocate of space exploration, saying it was essential to the long-term survival of the human race. “Life on Earth is at the ever-increasing risk of being wiped out by a disaster, such as sudden global nuclear war, a genetically engineered virus or other dangers we have not yet thought of,” he told an audience in Hong Kong in 2007.

Continue reading the main story

Source link