Commensal production of a broad-spectrum and short-lived antimicrobial peptide polyene eliminates nasal Staphylococcus aureus


  • Bomar, L., Brugger, S. D. & Lemon, K. P. Bacterial microbiota of the nasal passages across the span of human life. Curr. Opin. Microbiol. 41, 8–14 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Paller, A. S. et al. The microbiome in patients with atopic dermatitis. J. Allergy Clin. Immunol. 143, 26–35 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Totté, J. E. et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br. J. Dermatol. 175, 687–695 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lee, Y. B., Byun, E. J. & Kim, H. S. Potential role of the microbiome in acne: a comprehensive review. J. Clin. Med. 8, 987 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 4, 18033 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Heilbronner, S., Krismer, B., Brotz-Oesterhelt, H. & Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00569-w (2021).

  • Kloos, W. E. & Musselwhite, M. S. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl. Microbiol. 30, 381–385 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coates, R., Moran, J. & Horsburgh, M. J. Staphylococci: colonizers and pathogens of human skin. Future Microbiol. 9, 75–91 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du, X. et al. Staphylococcus epidermidis clones express Staphylococcus aureus-type wall teichoic acid to shift from a commensal to pathogen lifestyle. Nat. Microbiol. 6, 757–768 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cogen, A. L. et al. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS ONE 5, e8557 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cogen, A. L. et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 130, 192–200 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Otto, M. Phenol-soluble modulins. Int. J. Med. Microbiol. 304, 164–169 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Janek, D., Zipperer, A., Kulik, A., Krismer, B. & Peschel, A. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLoS Pathog. 12, e1005812 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Sullivan, J. N., Rea, M. C., O’Connor, P. M., Hill, C. & Ross, R. P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy241 (2018).

  • Götz, F., Perconti, S., Popella, P., Werner, R. & Schlag, M. Epidermin and gallidermin: staphylococcal lantibiotics. Int. J. Med. Microbiol. 304, 63–71 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Ekkelenkamp, M. B. et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett. 579, 1917–1922 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Molloy, E. M., Cotter, P. D., Hill, C., Mitchell, D. A. & Ross, R. P. Streptolysin S-like virulence factors: the continuing sagA. Nat. Rev. Microbiol. 9, 670–681 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Tyne, D., Martin, M. J. & Gilmore, M. S. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins 5, 895–911 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baquero, F., Lanza, V. F., Baquero, M.-R., del Campo, R. & Bravo-Vázquez, D. A. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02261 (2019).

  • Klein, T. A., Ahmad, S. & Whitney, J. C. Contact-dependent interbacterial antagonism mediated by protein secretion machines. Trends Microbiol. 28, 387–400 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Z., Casabona, M. G., Kneuper, H., Chalmers, J. D. & Palmer, T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2, 16183 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acosta, E. M. et al. Bacterial DNA on the skin surface overrepresents the viable skin microbiome. eLife https://doi.org/10.7554/eLife.87192.1 (2021).

  • Brüggemann, H. et al. Staphylococcus saccharolyticus isolated from blood cultures and prosthetic joint infections exhibits excessive genome decay. Front. Microbiol. 10, 478 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schnell, N. et al. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333, 276–278 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rogers, L. A. & Whittier, E. O. Limiting factors in the lactic fermentation. J. Bacteriol. 16, 211–229 (1928).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, X. et al. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat. Chem. Biol. 8, 823–830 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Law, B. J. C. et al. A vitamin K-dependent carboxylase orthologue is involved in antibiotic biosynthesis. Nat. Catal. 1, 977–984 (2018).

    Article 
    CAS 

    Google Scholar 

  • Fujii, I. Functional analysis of fungal polyketide biosynthesis genes. J. Antibiot. 63, 207–218 (2010).

    Article 
    CAS 

    Google Scholar 

  • Ng, B. G., Han, J. W., Lee, D. W., Choi, G. J. & Kim, B. S. The chejuenolide biosynthetic gene cluster harboring an iterative trans-AT PKS system in Hahella chejuensis strain MB-1084. J. Antibiot. 71, 495–505 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cavassin, F. B., Baú-Carneiro, J. L., Vilas-Boas, R. R. & Queiroz-Telles, F. Sixty years of amphotericin B: an overview of the main antifungal agent used to treat invasive fungal infections. Infect. Dis. Ther. 10, 115–147 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapun-Araiz, B. et al. Systematic reconstruction of the complete two-component sensorial network in Staphylococcus aureus. mSystems 5, e00511-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krismer, B. et al. Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation in the human nose. PLoS Pathog. 10, e1003862 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baur, S. et al. A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog. 10, e1004089 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sugimoto, Y. et al. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science 366, eaax9176 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donia, M. S. & Fischbach, M. A. Human microbiota. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Myrtle, J. D., Beekman, A. M. & Barrow, R. A. Ravynic acid, an antibiotic polyeneyne tetramic acid from Penicillium sp. elucidated through synthesis. Org. Biomol. Chem. 14, 8253–8260 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uranga, C., Nelson, K. E., Edlund, A. & Baker, J. L. Tetramic acids mutanocyclin and reutericyclin A, produced by Streptococcus mutans strain B04Sm5 modulate the ecology of an in vitro oral biofilm. Front. Oral Health 2, 796140 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ganzle, M. G. & Vogel, R. F. Studies on the mode of action of reutericyclin. Appl. Environ. Microbiol. 69, 1305–1307 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. R. et al. Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nat. Chem. Biol. 17, 576–584 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moldenhauer, J., Chen, X.-H., Borriss, R. & Piel, J. Biosynthesis of the antibiotic Bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angew. Chem. Int. Ed. 46, 8195–8197 (2007).

    Article 
    CAS 

    Google Scholar 

  • Pacheco, A. R. & Segrè, D. A multidimensional perspective on microbial interactions. FEMS Microbiol. Lett. 366, fnz125 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garcia-Bayona, L. & Comstock, L. E. Bacterial antagonism in host-associated microbial communities. Science 361, eaat2456 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Moghadam, Z. M., Henneke, P. & Kolter, J. From flies to men: ROS and the NADPH oxidase in phagocytes. Front. Cell Dev. Biol. 9, 628991 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khayatt, B. I., van Noort, V. & Siezen, R. J. The genome of the plant-associated lactic acid bacterium Lactococcus lactis KF147 harbors a hybrid NRPS–PKS system conserved in strains of the dental cariogenic Streptococcus mutans. Curr. Microbiol. 77, 136–145 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, C. et al. Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl. Environ. Microbiol. 76, 5815–5826 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neubauer, H., Pantel, I. & Götz, F. Molecular characterization of the nitrite-reducing system of Staphylococcus carnosus. J. Bacteriol. 181, 1481–1488 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutierrez, J. A. et al. Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J. Bacteriol. 178, 4166–4175 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Youngman, P. J., Perkins, J. B. & Losick, R. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc. Natl Acad. Sci. USA 80, 2305–2309 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Biopharma Bioinformatics. FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2018).

  • Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinforma. 70, e102 (2020).

    Article 
    CAS 

    Google Scholar 

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geiger, T. et al. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog. 8, e1003016 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brückner, R. Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol. Lett. 151, 1–8 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Bruckner, R. A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122, 187–192 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saising, J. et al. Rhodomyrtone (Rom) is a membrane-active compound. Biochim. Biophys. Acta Biomembr. 1860, 1114–1124 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    Rate this post

    Leave a Comment