Discovery of a structural class of antibiotics with explainable deep learning


  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, J. K. II et al. A dual-mechanism antibiotic kills Gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532.e14 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Culp, E. J. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 578, 582–587 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durand-Reville, T. F. et al. Rational design of a new antibiotic class for drug-resistant infections. Nature 597, 698–702 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 71–109 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilmer, J. et al. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning (2017).

  • Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, F. et al. Leveraging artificial intelligence in the fight against infectious diseases. Science 381, 164–170 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Melo, M. C. R., Maasch, J. R. M. A. & de la Fuente-Nunez, C. Accelerating antibiotic discovery through artificial intelligence. Commun. Biol. 4, 1050 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, F. et al. Discovering small-molecule senolytics with deep neural networks. Nat. Aging 3, 734–750 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (The Review on Antimicrobial Resistance, 2014)

  • Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sterling, T. & Irwin, J. J. ZINC 15—ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Camacho, D. M. et al. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 4, 18033 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Toxicology in the 21st century. National Center for Advancing Translational Sciences. https://tripod.nih.gov/tox/ (accessed 20 October 2022).

  • The Human Metabolome Database. https://hmdb.ca/metabolites (accessed 20 October 2022).

  • M-cule purchaseable database (in-stock), ver. 200601. https://mcule.com/database/ (accessed 27 June 2020).

  • Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  • Jin, W., Barzilay, R. & Jaakkola, T. Multi-objective molecule generation using interpretable substructures. In Proc. 37th International Conference on Machine Learning 450, 4849–4859 (2020).

  • Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Y., Jiang, T. & Girke, T. A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics 24, i366–i374 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. 49, 3525–3564 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brenk, R. et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3, 435–444 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Dis. Rev. 23, 3–25 (1997).

    Article 
    CAS 

    Google Scholar 

  • Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1, 55–68 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wong, F. et al. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol. Cell 82, 3499–3512 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, F. et al. Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. Nat. Commun. 12, 2321 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, F. et al. Understanding beta-lactam-induced lysis at the single-cell level. Front. Microbiol. 12, 712007 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, F. et al. Mechanics and dynamics of bacterial cell lysis. Biophys. J. 116, 2378–2389 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, E. J. et al. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2023.10.026 (2023). 

  • Farha, M. A., Verschoor, C. P., Bowdish, D. & Brown, E. D. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Chem. Biol. 20, 1168–1178 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hurdle, J. G. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol. 9, 62–75 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antibiotic Resistance Threats in the United States, 2019. Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed 20 September 2021).

  • Lewis, K. The science of antibiotic discovery. Cell 181, 29–45 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol. 1, 65–70 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ying, R., Bourgeois, D., You, J., Zitnik, M. & Leskovic, J. GNNExplainer: Generating explanations for graph neural networks. Adv. Neural. Inf. Process. Syst. 32, 9240–9251 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2, 573–584 (2020).

    Article 

    Google Scholar 

  • Yuan, H., Yu, H., Gui, S. & Ji, S. Explainability in graph neural networks: a taxonomic survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 5782–5799 (2023).

    PubMed 

    Google Scholar 

  • DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kazeev, N. The fast version of DeLong’s method for computing the covariance of unadjusted AUC. https://github.com/yandexdataschool/roc_comparison (accessed 21 July 2023).

  • Rosin, C. D. Multi-armed bandits with episode context. Ann. Math. Artif. Intell. 61, 203–230 (2011).

    Article 
    MathSciNet 

    Google Scholar 

  • Wang, Y., Backman, T. W. H., Horan, K. & Girke, T. fmcsR: mismatch tolerant maximum common substructure searching in R. Bioinformatics 29, 2792–2794 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 7, 42717 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, F. et al. Benchmarking AlphaFold‐enabled molecular docking predictions for antibiotic discovery. Mol. Syst. Biol. 18, e11081 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greco, I. et al. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep. 6, 13206 (2020).

    Article 
    ADS 

    Google Scholar 

  • Krol, L. R. Permutation Test. https://github.com/lrkrol/permutationTest (accessed 22 July 2023).

  • Wong, F. et al. Supporting code for: discovery of a structural class of antibiotics with explainable deep learning. Zenodo https://doi.org/10.5281/zenodo.10095879 (2023).



  • Source link

    Rate this post

    Leave a Comment