Wasielak-Politowska, M. & Kordowitzki, P. Chromosome segregation in the oocyte: what goes wrong during aging. Int. J. Mol. Sci. 23, 2880 (2022).
Google Scholar
Kim, H. O., Sung, N. & Song, I. O. Predictors of live birth and pregnancy success after in vitro fertilization in infertile women aged 40 and over. Clin. Exp. Reprod. Med. 44, 111–117 (2017).
Google Scholar
du Fosse, N. A., van der Hoorn, M. P., van Lith, J. M. M., le Cessie, S. & Lashley, E. Advanced paternal age is associated with an increased risk of spontaneous miscarriage: a systematic review and meta-analysis. Hum. Reprod. Update 26, 650–669 (2020).
Google Scholar
Seshadri, S., Morris, G., Serhal, P. & Saab, W. Assisted conception in women of advanced maternal age. Best Pract. Res. Clin. Obstet. Gynaecol. 70, 10–20 (2021).
Google Scholar
Raz, N. et al. Cumulative pregnancy and live birth rates through assisted reproduction in women 44–45 years of age: is there any hope? J. Assist. Reprod. Genet. 35, 441–447 (2018).
Google Scholar
Humm, K. C. et al. In vitro fertilization in women under 35: counseling should differ by age. J. Assist. Reprod. Genet. 32, 1449–1457 (2015).
Google Scholar
Mikwar, M., MacFarlane, A. J. & Marchetti, F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat. Res. Rev. Mutat. Res. 785, 108320 (2020).
Google Scholar
Miao, Y., Chen, J., Gao, Q. & Xiong, B. Generation and assessment of high-quality mouse oocytes and embryos following nicotinamide mononucleotide administration. STAR Protoc. 2, 100298 (2021).
Google Scholar
Miao, Y., Cui, Z., Gao, Q., Rui, R. & Xiong, B. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 32, 107987 (2020).
Google Scholar
Bertoldo, M. J. et al. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep. 30, 1670–1681 (2020).
Google Scholar
Kramer, D. L. et al. Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences. J. Biol. Chem. 283, 4241–4251 (2008).
Google Scholar
Soda, K. Overview of polyamines as nutrients for human healthy long life and effect of increased polyamine intake on DNA methylation. Cells 11, 164 (2022).
Google Scholar
Ni, Y. Q. & Liu, Y. S. New insights into the roles and mechanisms of spermidine in aging and age-related diseases. Aging Dis. 12, 1948–1963 (2021).
Google Scholar
Bae, D. H., Lane, D. J. R., Jansson, P. J. & Richardson, D. R. The old and new biochemistry of polyamines. Biochim. Biophys. Acta Gen. Subj. 1862, 2053–2068 (2018).
Google Scholar
Fan, J., Feng, Z. & Chen, N. Spermidine as a target for cancer therapy. Pharmacol. Res. 159, 104943 (2020).
Google Scholar
Lefevre, P. L., Palin, M. F. & Murphy, B. D. Polyamines on the reproductive landscape. Endocr. Rev. 32, 694–712 (2011).
Google Scholar
Partridge, L., Fuentealba, M. & Kennedy, B. K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 19, 513–532 (2020).
Google Scholar
Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).
Google Scholar
Morselli, E. et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615–629 (2011).
Google Scholar
Gupta, V. K. et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16, 1453–1460 (2013).
Google Scholar
Wang, I. F. et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl Acad. Sci. USA 109, 15024–15029 (2012).
Google Scholar
Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).
Google Scholar
Zhang, M., Lu, Y., Chen, Y., Zhang, Y. & Xiong, B. Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes. Redox Biol. 28, 101327 (2020).
Google Scholar
Ben-Meir, A. et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14, 887–895 (2015).
Google Scholar
Grive, K. J. & Freiman, R. N. The developmental origins of the mammalian ovarian reserve. Development 142, 2554–2563 (2015).
Google Scholar
Dri, M., Klinger, F. G. & De Felici, M. The ovarian reserve as target of insulin/IGF and ROS in metabolic disorder-dependent ovarian dysfunctions. Reprod. Fertil. 2, R103–R112 (2021).
Google Scholar
Randeva, H. S. et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr. Rev. 33, 812–841 (2012).
Google Scholar
Della Torre, S., Benedusi, V., Fontana, R. & Maggi, A. Energy metabolism and fertility: a balance preserved for female health. Nat. Rev. Endocrinol. 10, 13–23 (2014).
Google Scholar
Madeo, F., Bauer, M. A., Carmona-Gutierrez, D. & Kroemer, G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy 15, 165–168 (2019).
Google Scholar
Eisenhofer, G. et al. Reference intervals for plasma concentrations of adrenal steroids measured by LC–MS/MS: impact of gender, age, oral contraceptives, body mass index and blood pressure status. Clin. Chim. Acta 470, 115–124 (2017).
Google Scholar
Pizarro, B. M. et al. Estradiol and progesterone levels are related to redox status in the follicular fluid during in vitro fertilization. J. Endocr. Soc. 4, bvaa064 (2020).
Google Scholar
O’Brien, Y., Wingfield, M. & O’Shea, L. C. Anti-mullerian hormone and progesterone levels in human follicular fluid are predictors of embryonic development. Reprod. Biol. Endocrinol. 17, 47 (2019).
Google Scholar
Revelli, A. et al. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 7, 40 (2009).
Google Scholar
Hillier, S. G., Wickings, E. J., Afnan, M., Margara, R. A. & Winston, R. M. Granulosa cell steroidogenesis before in vitro fertilization. Biol. Reprod. 31, 679–686 (1984).
Google Scholar
Ben-Rafael, Z. et al. Relationships between polypronuclear fertilization and follicular fluid hormones in gonadotropin-treated women. Fertil. Steril. 47, 284–288 (1987).
Google Scholar
Miao, Y. L., Kikuchi, K., Sun, Q. Y. & Schatten, H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585 (2009).
Google Scholar
Liu, C. et al. Granulosa cell mevalonate pathway abnormalities contribute to oocyte meiotic defects and aneuploidy. Nat. Aging 3, 670–687 (2023).
Selesniemi, K., Lee, H. J., Muhlhauser, A. & Tilly, J. L. Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc. Natl Acad. Sci. USA 108, 12319–12324 (2011).
Google Scholar
Jiang, D. et al. Spermidine at supraphysiological doses induces oxidative stress and granulosa cell apoptosis in mouse ovaries. Theriogenology 168, 25–32 (2021).
Google Scholar
Hofer, S. J. et al. Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging. Autophagy 17, 2037–2039 (2021).
Google Scholar
Bauer, M. A. et al. Spermidine promotes mating and fertilization efficiency in model organisms. Cell Cycle 12, 346–352 (2013).
Google Scholar
Yang, Q. et al. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 23, 1850–1861 (2016).
Google Scholar
Baek, A. R. et al. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp. Mol. Med. 52, 2034–2045 (2020).
Google Scholar
Zhou, J. et al. Spermidine-mediated hypusination of translation factor EIF5A improves mitochondrial fatty acid oxidation and prevents non-alcoholic steatohepatitis progression. Nat. Commun. 13, 5202 (2022).
Google Scholar
Liu, S. et al. Effects of spermidine on gut microbiota modulation in experimental abdominal aortic aneurysm mice. Nutrients 14, 3349 (2022).
Google Scholar
Liu, L. et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development 134, 199–209 (2007).
Google Scholar
Jiang, Z. Z. et al. LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool. Oncotarget 7, 5738–5753 (2016).
Google Scholar
Pedersen, T. & Peters, H. Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 17, 555–557 (1968).
Google Scholar
Fan, X. Y. et al. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat. Biomed. Eng. 6, 339–350 (2022).
Google Scholar
Losinno, A. D., Martinez, S. J., Labriola, C. A., Carrillo, C. & Romano, P. S. Induction of autophagy increases the proteolytic activity of reservosomes during Trypanosoma cruzi metacyclogenesis. Autophagy 17, 439–456 (2021).
Google Scholar
Miao, Y., Cui, Z., Zhu, X., Gao, Q. & Xiong, B. Supplementation of nicotinamide mononucleotide improves the quality of postovulatory aged porcine oocytes. J. Mol. Cell Biol. 14, mjac025 (2022).
Google Scholar
Zhou, C. et al. The cohesin stabilizer sororin drives G2–M transition and spindle assembly in mammalian oocytes. Sci. Adv. 7, eabg9335 (2021).
Google Scholar
Zhou, C. et al. The cohesin release factor Wapl interacts with Bub3 to govern SAC activity in female meiosis I. Sci. Adv. 6, eaax3969 (2020).
Google Scholar