Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging


  • Wasielak-Politowska, M. & Kordowitzki, P. Chromosome segregation in the oocyte: what goes wrong during aging. Int. J. Mol. Sci. 23, 2880 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. O., Sung, N. & Song, I. O. Predictors of live birth and pregnancy success after in vitro fertilization in infertile women aged 40 and over. Clin. Exp. Reprod. Med. 44, 111–117 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • du Fosse, N. A., van der Hoorn, M. P., van Lith, J. M. M., le Cessie, S. & Lashley, E. Advanced paternal age is associated with an increased risk of spontaneous miscarriage: a systematic review and meta-analysis. Hum. Reprod. Update 26, 650–669 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seshadri, S., Morris, G., Serhal, P. & Saab, W. Assisted conception in women of advanced maternal age. Best Pract. Res. Clin. Obstet. Gynaecol. 70, 10–20 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raz, N. et al. Cumulative pregnancy and live birth rates through assisted reproduction in women 44–45 years of age: is there any hope? J. Assist. Reprod. Genet. 35, 441–447 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Humm, K. C. et al. In vitro fertilization in women under 35: counseling should differ by age. J. Assist. Reprod. Genet. 32, 1449–1457 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mikwar, M., MacFarlane, A. J. & Marchetti, F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat. Res. Rev. Mutat. Res. 785, 108320 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao, Y., Chen, J., Gao, Q. & Xiong, B. Generation and assessment of high-quality mouse oocytes and embryos following nicotinamide mononucleotide administration. STAR Protoc. 2, 100298 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, Y., Cui, Z., Gao, Q., Rui, R. & Xiong, B. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 32, 107987 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bertoldo, M. J. et al. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep. 30, 1670–1681 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kramer, D. L. et al. Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences. J. Biol. Chem. 283, 4241–4251 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soda, K. Overview of polyamines as nutrients for human healthy long life and effect of increased polyamine intake on DNA methylation. Cells 11, 164 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni, Y. Q. & Liu, Y. S. New insights into the roles and mechanisms of spermidine in aging and age-related diseases. Aging Dis. 12, 1948–1963 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bae, D. H., Lane, D. J. R., Jansson, P. J. & Richardson, D. R. The old and new biochemistry of polyamines. Biochim. Biophys. Acta Gen. Subj. 1862, 2053–2068 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, J., Feng, Z. & Chen, N. Spermidine as a target for cancer therapy. Pharmacol. Res. 159, 104943 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lefevre, P. L., Palin, M. F. & Murphy, B. D. Polyamines on the reproductive landscape. Endocr. Rev. 32, 694–712 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Partridge, L., Fuentealba, M. & Kennedy, B. K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 19, 513–532 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morselli, E. et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615–629 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, V. K. et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16, 1453–1460 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, I. F. et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl Acad. Sci. USA 109, 15024–15029 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M., Lu, Y., Chen, Y., Zhang, Y. & Xiong, B. Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes. Redox Biol. 28, 101327 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ben-Meir, A. et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14, 887–895 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grive, K. J. & Freiman, R. N. The developmental origins of the mammalian ovarian reserve. Development 142, 2554–2563 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dri, M., Klinger, F. G. & De Felici, M. The ovarian reserve as target of insulin/IGF and ROS in metabolic disorder-dependent ovarian dysfunctions. Reprod. Fertil. 2, R103–R112 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Randeva, H. S. et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr. Rev. 33, 812–841 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Della Torre, S., Benedusi, V., Fontana, R. & Maggi, A. Energy metabolism and fertility: a balance preserved for female health. Nat. Rev. Endocrinol. 10, 13–23 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Madeo, F., Bauer, M. A., Carmona-Gutierrez, D. & Kroemer, G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy 15, 165–168 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eisenhofer, G. et al. Reference intervals for plasma concentrations of adrenal steroids measured by LC–MS/MS: impact of gender, age, oral contraceptives, body mass index and blood pressure status. Clin. Chim. Acta 470, 115–124 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pizarro, B. M. et al. Estradiol and progesterone levels are related to redox status in the follicular fluid during in vitro fertilization. J. Endocr. Soc. 4, bvaa064 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, Y., Wingfield, M. & O’Shea, L. C. Anti-mullerian hormone and progesterone levels in human follicular fluid are predictors of embryonic development. Reprod. Biol. Endocrinol. 17, 47 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Revelli, A. et al. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 7, 40 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hillier, S. G., Wickings, E. J., Afnan, M., Margara, R. A. & Winston, R. M. Granulosa cell steroidogenesis before in vitro fertilization. Biol. Reprod. 31, 679–686 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ben-Rafael, Z. et al. Relationships between polypronuclear fertilization and follicular fluid hormones in gonadotropin-treated women. Fertil. Steril. 47, 284–288 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao, Y. L., Kikuchi, K., Sun, Q. Y. & Schatten, H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Liu, C. et al. Granulosa cell mevalonate pathway abnormalities contribute to oocyte meiotic defects and aneuploidy. Nat. Aging 3, 670–687 (2023).

  • Selesniemi, K., Lee, H. J., Muhlhauser, A. & Tilly, J. L. Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc. Natl Acad. Sci. USA 108, 12319–12324 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, D. et al. Spermidine at supraphysiological doses induces oxidative stress and granulosa cell apoptosis in mouse ovaries. Theriogenology 168, 25–32 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hofer, S. J. et al. Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging. Autophagy 17, 2037–2039 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, M. A. et al. Spermidine promotes mating and fertilization efficiency in model organisms. Cell Cycle 12, 346–352 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Q. et al. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 23, 1850–1861 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baek, A. R. et al. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp. Mol. Med. 52, 2034–2045 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, J. et al. Spermidine-mediated hypusination of translation factor EIF5A improves mitochondrial fatty acid oxidation and prevents non-alcoholic steatohepatitis progression. Nat. Commun. 13, 5202 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Effects of spermidine on gut microbiota modulation in experimental abdominal aortic aneurysm mice. Nutrients 14, 3349 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development 134, 199–209 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Z. Z. et al. LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool. Oncotarget 7, 5738–5753 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Pedersen, T. & Peters, H. Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 17, 555–557 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, X. Y. et al. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat. Biomed. Eng. 6, 339–350 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Losinno, A. D., Martinez, S. J., Labriola, C. A., Carrillo, C. & Romano, P. S. Induction of autophagy increases the proteolytic activity of reservosomes during Trypanosoma cruzi metacyclogenesis. Autophagy 17, 439–456 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao, Y., Cui, Z., Zhu, X., Gao, Q. & Xiong, B. Supplementation of nicotinamide mononucleotide improves the quality of postovulatory aged porcine oocytes. J. Mol. Cell Biol. 14, mjac025 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C. et al. The cohesin stabilizer sororin drives G2–M transition and spindle assembly in mammalian oocytes. Sci. Adv. 7, eabg9335 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C. et al. The cohesin release factor Wapl interacts with Bub3 to govern SAC activity in female meiosis I. Sci. Adv. 6, eaax3969 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Rate this post

    Leave a Comment