Wille, M. & Barr, I. G. Resurgence of avian influenza virus. Science 376, 459–460 (2022).
Google Scholar
European Food Safety Authority et al. Avian influenza overview December 2021–March 2022. EFSA J. 20, e07289 (2022).
Google Scholar
2022-2023 detections of highly pathogenic avian influenza. US Department of Agriculture Animal and Plant Health Inspection Service https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian/avian-influenza/2022-hpai (2023).
Escalera-Zamudio, M. et al. Parallel evolution in the emergence of highly pathogenic avian influenza A viruses. Nat. Commun. 11, 5511 (2020).
Google Scholar
Becker, W. B. The isolation and classification of Tern virus: influenza A-Tern South Africa-1961. J. Hyg. (Lond.) 64, 309–320 (1966).
Google Scholar
Chen, H. et al. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc. Natl Acad. Sci. USA 103, 2845–2850 (2006).
Google Scholar
WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature. Influenza Other Respir. Viruses 6, 1–5 (2012).
Google Scholar
Chen, H. et al. H5N1 virus outbreak in migratory waterfowl. Nature 436, 191–192 (2005).
Google Scholar
Ip, H. S. et al. High rates of detection of clade 2.3.4.4 highly pathogenic avian influenza H5 viruses in wild birds in the Pacific Northwest during the winter of 2014–15. Avian Dis. 60, 354–358 (2016).
Google Scholar
Engelsma, M., Heutink, R., Harders, F., Germeraad, E. A. & Beerens, N. Multiple introductions of reassorted highly pathogenic avian influenza H5Nx viruses clade 2.3.4.4b causing outbreaks in wild birds and poultry in The Netherlands, 2020–2021. Microbiol. Spectr. 10, e0249921 (2022).
Google Scholar
Global Consortium for H5N8 and Related Influenza Viruses.Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217 (2016).
Google Scholar
Li, Y. T., Su, Y. C. F. & Smith, G. J. D. H5Nx viruses emerged during the suppression of H5N1 virus populations in poultry. Microbiol. Spectr. 9, e0130921 (2021).
Google Scholar
van den Brand, J. M. A. et al. Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014–2015) without clinical or pathological evidence of disease. Emerg. Microbes Infect. 7, 67 (2018).
Google Scholar
Leyson, C. M., Youk, S., Ferreira, H. L., Suarez, D. L. & Pantin-Jackwood, M. Multiple gene segments are associated with enhanced virulence of clade 2.3.4.4 H5N8 highly pathogenic avian influenza virus in mallards. J. Virol. 95, e0095521 (2021).
Google Scholar
Lewis, N. S. et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg. Microbes Infect. 10, 148–151 (2021).
Google Scholar
Aguero, M. et al. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Euro. Surveill. 28, 2300001 (2023).
Google Scholar
Puryear, W. et al. Highly pathogenic avian influenza A(H5N1) virus outbreak in New England seals, United States. Emerg. Infect. Dis. 29, 786–791 (2023).
Google Scholar
Poen, M. J. et al. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017–18. Virus Evol. 5, vez004 (2019).
Google Scholar
Ramos, S., MacLachlan, M. & Melton, A. Impacts of the 2014-2015 Highly Pathogenic Avian Influenza Outbreak on the US Poultry Sector. Livestock, Dairy, and Poultry Outlook No. (LDPM-282-02) (USDA, 2017).
Gass, J. D. Jr et al. Global dissemination of influenza A virus is driven by wild bird migration through arctic and subarctic zones. Mol. Ecol. https://doi.org/10.1111/mec.16738 (2022).
Google Scholar
Reperant, L. A., Fuckar, N. S., Osterhaus, A. D., Dobson, A. P. & Kuiken, T. Spatial and temporal association of outbreaks of H5N1 influenza virus infection in wild birds with the 0 degrees C isotherm. PLoS Pathog. 6, e1000854 (2010).
Google Scholar
Swieton, E. et al. Sub-Saharan Africa and Eurasia ancestry of reassortant highly pathogenic avian influenza A(H5N8) virus, Europe, December 2019. Emerg. Infect. Dis. 26, 1557–1561 (2020).
Google Scholar
Napp, S., Majo, N., Sanchez-Gonzalez, R. & Vergara-Alert, J. Emergence and spread of highly pathogenic avian influenza A(H5N8) in Europe in 2016–2017. Transbound. Emerg. Dis. 65, 1217–1226 (2018).
Google Scholar
Zhu, W. et al. Epidemiologic, clinical, and genetic characteristics of human infections with influenza A(H5N6) viruses, China. Emerg. Infect. Dis. 28, 1332–1344 (2022).
Google Scholar
Gass, J. D. Jr et al. Global dissemination of influenza A virus is driven by wild bird migration through arctic and subarctic zones. Mol. Ecol. 32, 198–213 (2023).
Google Scholar
Gunther, A. et al. Iceland as stepping stone for spread of highly pathogenic avian influenza virus between Europe and North America. Emerg. Infect. Dis. 28, 2383–2388 (2022).
Google Scholar
Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).
Google Scholar
Trovao, N. S., Suchard, M. A., Baele, G., Gilbert, M. & Lemey, P. Bayesian inference reveals host-specific contributions to the epidemic expansion of influenza A H5N1. Mol. Biol. Evol. 32, 3264–3275 (2015).
Google Scholar
Hill, N. J. et al. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog. 18, e1010062 (2022).
Google Scholar
Vijaykrishna, D. et al. Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog. 4, e1000161 (2008).
Google Scholar
Linster, M. et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 157, 329–339 (2014).
Google Scholar
Wille, M. et al. Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl. Virus Evol. 8, veac074 (2022).
Google Scholar
Pu, J. et al. Reassortment with dominant chicken H9N2 influenza virus contributed to the fifth H7N9 virus human epidemic. J. Virol. 95, e01578-20 (2021).
Google Scholar
Ouoba, L. B. et al. Emergence of a reassortant 2.3.4.4b highly pathogenic H5N1 avian influenza virus containing H9N2 PA gene in Burkina Faso, West Africa, in 2021. Viruses 14, 1901 (2022).
Google Scholar
Kalkauskas, A. et al. Sampling bias and model choice in continuous phylogeography: getting lost on a random walk. PLoS Comput. Biol. 17, e1008561 (2021).
Google Scholar
Jimenez-Bluhm, P. et al. Detection and phylogenetic analysis of highly pathogenic A/H5N1 avian influenza clade 2.3.4.4b virus in Chile, 2022. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526205 (2023).
Rushing, C. S., Royle, J. A., Ziolkowski, D. J. Jr & Pardieck, K. L. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proc. Natl Acad. Sci. USA 117, 12897–12903 (2020).
Google Scholar
McLean, N. et al. Warming temperatures drive at least half of the magnitude of long-term trait changes in European birds. Proc. Natl Acad. Sci. USA 119, e2105416119 (2022).
Google Scholar
Huang, Z. Y. X. et al. Contrasting effects of host species and phylogenetic diversity on the occurrence of HPAI H5N1 in European wild birds. J. Anim. Ecol. 88, 1044–1053 (2019).
Google Scholar
Zhang, G. et al. Bidirectional movement of emerging H5N8 avian influenza viruses between Europe and Asia via migratory birds since early 2020. Mol. Biol. Evol. 40, msad019 (2023).
Google Scholar
Boni, M. F., Galvani, A. P., Wickelgren, A. L. & Malani, A. Economic epidemiology of avian influenza on smallholder poultry farms. Theor. Popul. Biol. 90, 135–144 (2013).
Google Scholar
Liu, S. et al. Control of avian influenza in China: strategies and lessons. Transbound. Emerg. Dis. 67, 1463–1471 (2020).
Google Scholar
Lederman, Z. One health and culling as a public health measure. Public Health Ethics 9, 5–23 (2016).
Google Scholar
Peyre, M. et al. Avian influenza vaccination in Egypt: limitations of the current strategy. J. Mol. Genet. Med. 3, 198–204 (2009).
Google Scholar
Wu, J. et al. Influenza H5/H7 virus vaccination in poultry and reduction of zoonotic infections, Guangdong Province, China, 2017–18. Emerg. Infect. Dis. 25, 116–118 (2019).
Google Scholar
Ellis, T. M. et al. Use of avian influenza vaccination in Hong Kong. Dev. Biol. 124, 133–143 (2006).
Google Scholar
Grund, C. et al. Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2.1 Egyptian isolate. Vaccine 29, 5567–5573 (2011).
Google Scholar
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
Google Scholar
Sagulenko, P., Puller, V. & Neher, R. A. TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol. 4, vex042 (2018).
Google Scholar
Smith, G. J. D. et al. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza Other Respir. Viruses 9, 271–276 (2015).
Google Scholar
Shepard, S. S. et al. LABEL: fast and accurate lineage assignment with assessment of H5N1 and H9N2 influenza A hemagglutinins. PLoS ONE 9, e86921 (2014).
Google Scholar
Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Google Scholar
Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).
Google Scholar
Chernomor, O. et al. Split diversity in constrained conservation prioritization using integer linear programming. Methods Ecol. Evol. 6, 83–91 (2015).
Google Scholar
Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).
Google Scholar
Parker, J., Rambaut, A. & Pybus, O. G. Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect. Genet. Evol. 8, 239–246 (2008).
Google Scholar
Bielejec, F. et al. SpreaD3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).
Google Scholar
Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56, 391–412 (2008).
Google Scholar
Bedford, T. et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217–220 (2015).
Google Scholar
Minin, V. N., Bloomquist, E. W. & Suchard, M. A. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol. Biol. Evol. 25, 1459–1471 (2008).
Google Scholar
Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).
Google Scholar
McCrone, J. T. et al. Context-specific emergence and growth of the SARS-CoV-2 Delta variant. Nature 610, 154–160 (2022).
Google Scholar
Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).
Google Scholar