The episodic resurgence of highly pathogenic avian influenza H5 virus


  • Wille, M. & Barr, I. G. Resurgence of avian influenza virus. Science 376, 459–460 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • European Food Safety Authority et al. Avian influenza overview December 2021–March 2022. EFSA J. 20, e07289 (2022).

    PubMed Central 

    Google Scholar 

  • 2022-2023 detections of highly pathogenic avian influenza. US Department of Agriculture Animal and Plant Health Inspection Service https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian/avian-influenza/2022-hpai (2023).

  • Escalera-Zamudio, M. et al. Parallel evolution in the emergence of highly pathogenic avian influenza A viruses. Nat. Commun. 11, 5511 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker, W. B. The isolation and classification of Tern virus: influenza A-Tern South Africa-1961. J. Hyg. (Lond.) 64, 309–320 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, H. et al. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc. Natl Acad. Sci. USA 103, 2845–2850 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature. Influenza Other Respir. Viruses 6, 1–5 (2012).

    Article 

    Google Scholar 

  • Chen, H. et al. H5N1 virus outbreak in migratory waterfowl. Nature 436, 191–192 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ip, H. S. et al. High rates of detection of clade 2.3.4.4 highly pathogenic avian influenza H5 viruses in wild birds in the Pacific Northwest during the winter of 2014–15. Avian Dis. 60, 354–358 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Engelsma, M., Heutink, R., Harders, F., Germeraad, E. A. & Beerens, N. Multiple introductions of reassorted highly pathogenic avian influenza H5Nx viruses clade 2.3.4.4b causing outbreaks in wild birds and poultry in The Netherlands, 2020–2021. Microbiol. Spectr. 10, e0249921 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Global Consortium for H5N8 and Related Influenza Viruses.Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217 (2016).

    Article 

    Google Scholar 

  • Li, Y. T., Su, Y. C. F. & Smith, G. J. D. H5Nx viruses emerged during the suppression of H5N1 virus populations in poultry. Microbiol. Spectr. 9, e0130921 (2021).

    Article 
    PubMed 

    Google Scholar 

  • van den Brand, J. M. A. et al. Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014–2015) without clinical or pathological evidence of disease. Emerg. Microbes Infect. 7, 67 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Leyson, C. M., Youk, S., Ferreira, H. L., Suarez, D. L. & Pantin-Jackwood, M. Multiple gene segments are associated with enhanced virulence of clade 2.3.4.4 H5N8 highly pathogenic avian influenza virus in mallards. J. Virol. 95, e0095521 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lewis, N. S. et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg. Microbes Infect. 10, 148–151 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aguero, M. et al. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Euro. Surveill. 28, 2300001 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Puryear, W. et al. Highly pathogenic avian influenza A(H5N1) virus outbreak in New England seals, United States. Emerg. Infect. Dis. 29, 786–791 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poen, M. J. et al. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017–18. Virus Evol. 5, vez004 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramos, S., MacLachlan, M. & Melton, A. Impacts of the 2014-2015 Highly Pathogenic Avian Influenza Outbreak on the US Poultry Sector. Livestock, Dairy, and Poultry Outlook No. (LDPM-282-02) (USDA, 2017).

  • Gass, J. D. Jr et al. Global dissemination of influenza A virus is driven by wild bird migration through arctic and subarctic zones. Mol. Ecol. https://doi.org/10.1111/mec.16738 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Reperant, L. A., Fuckar, N. S., Osterhaus, A. D., Dobson, A. P. & Kuiken, T. Spatial and temporal association of outbreaks of H5N1 influenza virus infection in wild birds with the 0 degrees C isotherm. PLoS Pathog. 6, e1000854 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swieton, E. et al. Sub-Saharan Africa and Eurasia ancestry of reassortant highly pathogenic avian influenza A(H5N8) virus, Europe, December 2019. Emerg. Infect. Dis. 26, 1557–1561 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Napp, S., Majo, N., Sanchez-Gonzalez, R. & Vergara-Alert, J. Emergence and spread of highly pathogenic avian influenza A(H5N8) in Europe in 2016–2017. Transbound. Emerg. Dis. 65, 1217–1226 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, W. et al. Epidemiologic, clinical, and genetic characteristics of human infections with influenza A(H5N6) viruses, China. Emerg. Infect. Dis. 28, 1332–1344 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gass, J. D. Jr et al. Global dissemination of influenza A virus is driven by wild bird migration through arctic and subarctic zones. Mol. Ecol. 32, 198–213 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Gunther, A. et al. Iceland as stepping stone for spread of highly pathogenic avian influenza virus between Europe and North America. Emerg. Infect. Dis. 28, 2383–2388 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trovao, N. S., Suchard, M. A., Baele, G., Gilbert, M. & Lemey, P. Bayesian inference reveals host-specific contributions to the epidemic expansion of influenza A H5N1. Mol. Biol. Evol. 32, 3264–3275 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, N. J. et al. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog. 18, e1010062 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vijaykrishna, D. et al. Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog. 4, e1000161 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linster, M. et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 157, 329–339 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wille, M. et al. Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl. Virus Evol. 8, veac074 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pu, J. et al. Reassortment with dominant chicken H9N2 influenza virus contributed to the fifth H7N9 virus human epidemic. J. Virol. 95, e01578-20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouoba, L. B. et al. Emergence of a reassortant 2.3.4.4b highly pathogenic H5N1 avian influenza virus containing H9N2 PA gene in Burkina Faso, West Africa, in 2021. Viruses 14, 1901 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalkauskas, A. et al. Sampling bias and model choice in continuous phylogeography: getting lost on a random walk. PLoS Comput. Biol. 17, e1008561 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jimenez-Bluhm, P. et al. Detection and phylogenetic analysis of highly pathogenic A/H5N1 avian influenza clade 2.3.4.4b virus in Chile, 2022. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526205 (2023).

  • Rushing, C. S., Royle, J. A., Ziolkowski, D. J. Jr & Pardieck, K. L. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proc. Natl Acad. Sci. USA 117, 12897–12903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McLean, N. et al. Warming temperatures drive at least half of the magnitude of long-term trait changes in European birds. Proc. Natl Acad. Sci. USA 119, e2105416119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Z. Y. X. et al. Contrasting effects of host species and phylogenetic diversity on the occurrence of HPAI H5N1 in European wild birds. J. Anim. Ecol. 88, 1044–1053 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, G. et al. Bidirectional movement of emerging H5N8 avian influenza viruses between Europe and Asia via migratory birds since early 2020. Mol. Biol. Evol. 40, msad019 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boni, M. F., Galvani, A. P., Wickelgren, A. L. & Malani, A. Economic epidemiology of avian influenza on smallholder poultry farms. Theor. Popul. Biol. 90, 135–144 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liu, S. et al. Control of avian influenza in China: strategies and lessons. Transbound. Emerg. Dis. 67, 1463–1471 (2020).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Lederman, Z. One health and culling as a public health measure. Public Health Ethics 9, 5–23 (2016).

    Article 

    Google Scholar 

  • Peyre, M. et al. Avian influenza vaccination in Egypt: limitations of the current strategy. J. Mol. Genet. Med. 3, 198–204 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. et al. Influenza H5/H7 virus vaccination in poultry and reduction of zoonotic infections, Guangdong Province, China, 2017–18. Emerg. Infect. Dis. 25, 116–118 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellis, T. M. et al. Use of avian influenza vaccination in Hong Kong. Dev. Biol. 124, 133–143 (2006).

    CAS 

    Google Scholar 

  • Grund, C. et al. Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2.1 Egyptian isolate. Vaccine 29, 5567–5573 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sagulenko, P., Puller, V. & Neher, R. A. TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol. 4, vex042 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, G. J. D. et al. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza Other Respir. Viruses 9, 271–276 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shepard, S. S. et al. LABEL: fast and accurate lineage assignment with assessment of H5N1 and H9N2 influenza A hemagglutinins. PLoS ONE 9, e86921 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chernomor, O. et al. Split diversity in constrained conservation prioritization using integer linear programming. Methods Ecol. Evol. 6, 83–91 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Parker, J., Rambaut, A. & Pybus, O. G. Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect. Genet. Evol. 8, 239–246 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bielejec, F. et al. SpreaD3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56, 391–412 (2008).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Bedford, T. et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217–220 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minin, V. N., Bloomquist, E. W. & Suchard, M. A. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol. Biol. Evol. 25, 1459–1471 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCrone, J. T. et al. Context-specific emergence and growth of the SARS-CoV-2 Delta variant. Nature 610, 154–160 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Rate this post

    Leave a Comment