The direction of theta and alpha travelling waves modulates human memory processing

[ad_1]

  • Ermentrout, G. B. & Kleinfeld, D. Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29, 33–44 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muller, L., Chavane, Frédéric, Reynolds, J. & Sejnowski, T. J. Cortical travelling waves: mechanisms and computational principles. Nat. Rev. Neurosci. 19, 255–268 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Lubenov, E. V. & Siapas, A. G. Hippocampal theta oscillations are travelling waves. Nature 459, 534–539 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, Z. W., Muller, L., Martinez-Trujillo, J., Sejnowski, T. & Reynolds, J. H. Spontaneous travelling cortical waves gate perception in behaving primates. Nature 587, 432–436 (2020).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Benucci, A., Frazor, R. A. & Carandini, M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55, 103–117 (2007).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Hamid, A. A., Frank, M. J. & Moore, C. I. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell 184, 2733–2749 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Hernández-Pérez, J. Jesús, Cooper, K. W. & Newman, E. L. Medial entorhinal cortex activates in a traveling wave in the rat. eLife 9, e52289 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Bahramisharif, A. et al. Propagating neocortical gamma bursts are coordinated by traveling alpha waves. J. Neurosci. 33, 18849–18854 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Zhang, H., Watrous, A. J., Patel, A. & Jacobs, J. Theta and alpha oscillations are traveling waves in the human neocortex. Neuron 98, 1269–1281.e4 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Alexander, D. M. et al. Traveling waves and trial averaging: the nature of single-trial and averaged brain responses in large-scale cortical signals. NeuroImage 73, 95–112 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Sato, T. K., Nauhaus, I. & Carandini, M. Traveling waves in visual cortex. Neuron 75, 218–229 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adrian, E. D. & Matthews, B. H. C. The Berger rhythm: potential changes from the occipital lobes in man. Brain 57, 355–385 (1934).

    Article 

    Google Scholar 

  • Nauhaus, I., Busse, L., Carandini, M. & Ringach, D. L. Stimulus contrast modulates functional connectivity in visual cortex. Nat. Neurosci. 12, 70–76 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muller, L., Reynaud, A., Chavane, F. & Destexhe, A. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat. Commun. 5, 3675 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Muller, L. et al. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. eLife 5, e17267 (2016).

    Article 
    ADS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Takahashi, K. et al. Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex. Nat. Commun. 6, 7169 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Roberts, J. A. et al. Metastable brain waves. Nat. Commun. 10, 1056 (2019).

    Article 
    ADS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Bhattacharya, S., Cauchois, M. B. L., Iglesias, P. A. & Chen, Z. S. The impact of a closed-loop thalamocortical model on the spatiotemporal dynamics of cortical and thalamic traveling waves. Sci. Rep. 11, 14359 (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Kopell, N. J., Gritton, H. J., Whittington, M. A. & Kramer, M. A. Beyond the connectome: the dynome. Neuron 83, 1319–1328 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Alamia, A. & VanRullen, R. Alpha oscillations and traveling waves: signatures of predictive coding? PLoS Biol. 17, e3000487 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Pang, Z., Alamia, A. & VanRullen, R. Turning the stimulus on and off changes the direction of α traveling waves. eNeuro 7, ENEURO.0218-20.2020 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Alamia, A., Terral, L., d’Ambra, M. R. & Van Rullen, R. Distinct roles of forward and backward alpha-band waves in spatial visual attention. eLife 12, e85035 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Engel, A., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Linde-Domingo, J., Treder, M. S., Kerrén, C. & Wimber, M. Evidence that neural information flow is reversed between object perception and object reconstruction from memory. Nat. Commun. 10, 179 (2019).

    Article 
    ADS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J. & Madsen, J. R. Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 23, 10809–10814 (2003).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Burke, J. F. et al. Synchronous and asynchronous theta and gamma activity during episodic memory formation. J. Neurosci. 33, 292–304 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Fisher, N. I. Statistical Analysis of Circular Data (Cambridge Univ. Press, 1993).

  • Zhang, H. & Jacobs, J. Traveling theta waves in the human hippocampus. J. Neurosci. 35, 12477–12487 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Polyn, S. M., Norman, K. A. & Kahana, M. J. A context maintenance and retrieval model of organizational processes in free recall. Psychol. Rev. 116, 129–156 (2009).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Burke, J. F. et al. Human intracranial high-frequency activity maps episodic memory formation in space and time. NeuroImage 85, 834–843 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Jacobs, J., Kahana, M. J., Ekstrom, A. D. & Fried, I. Brain oscillations control timing of single-neuron activity in humans. J. Neurosci. 27, 3839–3844 (2007).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Luczak, A., McNaughton, B. L. & Harris, K. D. Packet-based communication in the cortex. Nat. Rev. Neurosci. 16, 745–755 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hahn, G., Ponce-Alvarez, A., Deco, G., Aertsen, A. & Kumar, A. Portraits of communication in neuronal networks. Nat. Rev. Neurosci. 20, 117–127 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heitmann, S., Boonstra, T. & Breakspear, M. A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex. PLoS Comput. Biol. 9, e1003260 (2013).

    Article 
    ADS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Sato, N. Cortical traveling waves reflect state-dependent hierarchical sequencing of local regions in the human connectome network. Sci. Rep. 12, 334 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Sherfey, J., Ardid, S., Miller, E. K., Hasselmo, M. E. & Kopell, N. J. Prefrontal oscillations modulate the propagation of neuronal activity required for working memory. Neurobiol. Learn. Mem. 173, 107228 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Girard, P., Hupé, J. M. & Bullier, J. Feedforward and feedback connections between areas v1 and v2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85, 1328–1331 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • González-Burgos, G., Barrionuevo, G. & Lewis, D. A. Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb. Cortex 10, 82–92 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Chiang, Chia-Chu, Shivacharan, R. S., Wei, X., Gonzalez-Reyes, L. E. & Durand, D. M. Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling. J. Physiol. 597, 249–269 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kleen, J. K. et al. Bidirectional propagation of low frequency oscillations over the human hippocampal surface. Nat. Commun. 12, 2764 (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Heitmann, S., Gong, P. & Breakspear, M. A computational role for bistability and traveling waves in motor cortex. Front. Comput. Neurosci. 6, 67 (2012).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Zabeh, E., Foley, N. C., Jacobs, J. & Gottlieb, J. P. Beta traveling waves in monkey frontal and parietal areas encode recent reward history. Nat. Commun. 14, 5428 (2023).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Place, R., Farovik, A., Brockmann, M. & Eichenbaum, H. Bidirectional prefrontal–hippocampal interactions support context-guided memory. Nat. Neurosci. 19, 992–994 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rajasethupathy, P. et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 526, 653–659 (2015).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bastos, A. M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Buffalo, E. A., Fries, P., Landman, R., Liang, H. & Desimone, R. A backward progression of attentional effects in the ventral stream. Proc. Natl Acad. Sci. USA 107, 361–365 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Friston, K. Hierarchical models in the brain. PLoS Comput. Biol. 4, e1000211 (2008).

    Article 
    ADS 
    MathSciNet 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Rubino, D., Robbins, K. A. & Hatsopoulos, N. G. Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549–1557 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balasubramanian, K. et al. Propagating motor cortical dynamics facilitate movement initiation. Neuron 106, 526–536 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Bhattacharya, S., Brincat, S. L., Lundqvist, M. & Miller, E. K. Traveling waves in the prefrontal cortex during working memory. PLoS Comput. Biol. 18, e1009827 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Li, J. et al. Anterior–posterior hippocampal dynamics support working memory processing. J. Neurosci. 42, 443–453 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Michalareas, G. et al. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Contreras, D., Destexhe, A., Sejnowski, T. J. & Steriade, M. Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J. Neurosci. 17, 1179–1196 (1997).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Muller, L. & Destexhe, A. Propagating waves in thalamus, cortex and the thalamocortical system: experiments and models. J. Physiol. Paris 106, 222–238 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Halgren, M. et al. The generation and propagation of the human alpha rhythm. Proc. Natl Acad. Sci. USA 116, 23772–23782 (2019).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Breakspear, M., Heitmann, S. & Daffertshofer, A. Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 4, 190 (2010).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barzegaran, E. & Plomp, G. Four concurrent feedforward and feedback networks with different roles in the visual cortical hierarchy. PLoS Biol. 20, e3001534 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • King, J.-R. & Wyart, V. The human brain encodes a chronicle of visual events at each instant of time through the multiplexing of traveling waves. J. Neurosci. 41, 7224–7233 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S. & Greenlee, M. W. Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Curr. Biol. 23, 2273–2278 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sauseng, P. et al. EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum. Brain Mapp. 26, 148–155 (2005).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Hanslmayr, S. et al. The relationship between brain oscillations and BOLD signal during memory formation: a combined EEG–fMRI study. J. Neurosci. 31, 15674–15680 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Busch, N. A., Dubois, J. & Van Rullen, R. The phase of ongoing EEG oscillations predicts visual perception. J. Neurosci. 29, 7869–7876 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M. & Ro, T. To see or not to see: prestimulus α phase predicts visual awareness. J. Neurosci. 29, 2725–2732 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Dugué, L., Marque, P. & Van Rullen, R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J. Neurosci. 31, 11889–11893 (2011).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Patten, T. M., Rennie, C. J., Robinson, P. A. & Gong, P. Human cortical traveling waves: dynamical properties and correlations with responses. PLoS ONE 7, e38392 (2012).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Lozano-Soldevilla, D. & Van Rullen, R. The hidden spatial dimension of alpha: 10-Hz perceptual echoes propagate as periodic traveling waves in the human brain. Cell Rep. 26, 374–380 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Stolk, A. et al. Electrocorticographic dissociation of alpha and beta rhythmic activity in the human sensorimotor system. eLife 8, e48065 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gazzaley, A. & Nobre, A. C. Top-down modulation: bridging selective attention and working memory. Trends Cogn. Sci. 16, 129–135 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J. & Nobre, A. C. Inter- and intra-individual variability in alpha peak frequency. NeuroImage 92, 46–55 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Mahjoory, K., Schoffelen, J.-M., Keitel, A. & Gross, J. The frequency gradient of human resting-state brain oscillations follows cortical hierarchies. eLife 9, e53715 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Pang, J. C. et al. Geometric constraints on human brain function. Nature 618, 566–574 (2023).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Fischl, B. R., Sereno, M. I., Tootell, R. B. H. & Dale, A. M. High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Steinmetz, N. A., Koch, C., Harris, K. D. & Carandini, M. Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Khodagholy, D. et al. Neurogrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ribary, U. et al. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl Acad. Sci. USA 88, 11037–11041 (1991).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Boto, E. et al. A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers. NeuroImage 149, 404–414 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Said, C. P., Egan, R. D., Minshew, N. J., Behrmann, M. & Heeger, D. J. Normal binocular rivalry in autism: implications for the excitation/inhibition imbalance hypothesis. Vis. Res. 77, 59–66 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Smith, E. H. et al. Human interictal epileptiform discharges are bidirectional traveling waves echoing ictal discharges. eLife 11, e73541 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (G. Thieme, 1988).

  • Das, A. et al. Spontaneous neuronal oscillations in the human insula are hierarchically organized traveling waves. eLife 11, e76702 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Berens, P. Circstat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

    Article 

    Google Scholar 

  • Kempter, R., Leibold, C., Buzsáki, G., Diba, K. & Schmidt, R. Quantifying circular–linear associations: hippocampal phase precession. J. Neurosci. Methods 207, 113–124 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Masseran, N., Razali, A. M., Ibrahim, K. & Latif, M. T. Fitting a mixture of von Mises distributions in order to model data on wind direction in peninsular Malaysia. Energy Convers. Manage. 72, 94–102 (2013).

    Article 

    Google Scholar 

  • Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. Fieldtrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet 

    Google Scholar 

  • Nilearn contributors. nilearn. GitHub https://github.com/nilearn/nilearn (2007–2023).

  • Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • [ad_2]

    Source link

    Leave a Comment